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Abstract

Household energy consumption in developing countries is expected to surge in the coming

decades. Yet little is known about how temperature drives household energy demand in de-

veloping countries. This paper uses 132,375,282 hourly electricity consumption observations

from 5,975 households in South Africa to estimate the effects of temperature on household

electricity consumption. The estimates flexibly identify a constant log-linear temperature

response: for every 1◦C increase in temperature, electricity consumption decreases by 4.1%

among temperatures below the heating threshold but increases by 12.2% among temperatures

above the cooling threshold. This relationship is driven more strongly by seasonal than hourly

temperature changes. Holding all else constant, a 3.25◦C increase in temperatures would re-

duce electricity consumption by 1,093.4 kWh (6.2%) per year per household. Widespread

use of electric heating due to limited residential gas heating infrastructure likely drives this.

These results point to important regional heterogeneity in how temperature increases may

affect household energy demand in the coming decades.
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1 Introduction

In the next several decades, energy use in emerging markets is expected to rise dramatically. From

2007 to 2035, energy consumption is predicted to grow by 84% in non-OECD countries compared

to 14% in OECD countries (Wolfram et al. (2012)). However, despite these large predicted in-

creases, little is known about how the electricity consumption profiles of middle and higher income

households in developing countries respond to temperature changes. In addition, while much re-

search in this area has focused on the marginal increase in energy demand caused by an increase in

air-conditioning usage when temperatures reach higher extremes, less is known about the response

to temperature increases at lower temperatures.

Household temperature responses in emerging markets more commonly include electric

heating rather than gas heating, suggesting that energy consumption responses at lower tempera-

tures may be substantially different in these regions than in Europe and North America. In many

OECD countries, gas constitutes the primary source of space heating. In the U.S., natural gas

(49%) and fuel oil, kerosene, and propane (10%) constitute the bulk of primary space heating

for households, with electricity the primary heating source for only 38% of households, according

to the EIA Residential Energy Consumption Survey (2015). Dunbabin et al. (2015) find that

the primary fuel source of heating in the UK is also gas, and only 10% of British households

supplement with electrical heating in cold winter months. While data are limited, these figures

may look different in developing countries, where residential gas infrastructure is not as prevalent.

According to the World Bank (2011), as incomes rise, the poorest households acquire access to

electricity well before gas heating. In South Africa, only 3% of households use natural gas as

their primary source of heating, while 67% cite electricity as their primary source of space heating,

according to the 2011 South African Census. Electricity is also the primary source of heating in

Brazil (Coelho et al. (2014)). Poor insulation and unreliable infrastructure frequently found in

lower-income countries can lead to higher levels of energy consumption at low temperatures than

in higher-income countries. This suggests that we may see significantly higher energy consumption
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at lower temperatures. Gupta (2014) uses daily panel data at the state level from India to docu-

ment that household electricity demand has a stronger negative response to higher temperatures

in cooler regions, where households adapt to colder temperatures using electric heating equipment.

Yet, little is known about how temperature affects short-term household-level energy consumption

in settings where a majority of households employ electricity rather than natural gas for space

heating.

This paper fills this gap by providing a comprehensive understanding of the effect of tem-

perature on household electricity demand in South Africa. Like in much of Africa, penetration of

household air-conditioning units in South Africa is limited, while electric heating is widespread. To

the best of my knowledge, this is the first paper that uses high-frequency household-level electricity

consumption data from a developing country. This paper uses 132,375,282 hourly household elec-

tricity consumption observations from 2010 to 2013 for 5,975 households in Johannesburg to study

the impact of temperature on electricity consumption. The analysis identifies two main results.

First, households use substantially more electricity at cold temperatures than at medium

temperatures. An algorithm designed to search across the temperature range in 0.5◦C intervals to

minimize the root mean squared error identifies a heating threshold of 23◦C and a cooling threshold

of 30.5◦C. Across the entire temperature range 2−23◦C, households consistently consume 4.1% less

electricity for every 1◦C increase in outdoor temperatures. Consumption remains largely constant

between 23− 30.5◦C, and then appears to increase sharply for temperatures greater than 30.5◦C.

Aggregating the effects across the distribution of temperatures, the heating response dominates the

cooling response. Holding all else constant, including the household rate of ownership of household

appliances such as electric heating and air conditioning, an increase in temperatures of 3.25◦C by

mid-century would cause a marginal decrease in electricity consumption of 1,093.4 kWh per year

per household, or 6.2% relative to baseline levels.

Second, household temperature responses vary strongly by season, and household temper-

ature response becomes much more muted after controlling for seasonal temperature variation.
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Particularly during the summer months, household electricity consumption does not appear to re-

spond strongly to temperature variation in the short-term. By 2040, Johannesburg is expected to

experience 35 additional days per year where the maximum temperature reaches above 27◦C, with

an additional significant increase in the number of days where the maximum temperature reaches

above 32◦C (Garland et al. (2015)). However, if households do not respond to daily fluctuations as

much as they respond to increases in average seasonal temperatures, then current estimates that

are based on large fluctuations in daily weather may overestimate the extent to which increases in

daily temperature fluctuations will drive an increase in energy consumption.

This paper proceeds as follows. Section 2 provides an overview of the existing literature in

this field. Section 3 provides context around the South African household electricity pricing and

market structure. Section 4 presents the data and Section 5 presents the identification strategy.

Section 6 discusses the results and presents several robustness and heterogeneity checks to verify

these results. Section 7 simulates household responses to predicted temperature increases under

climate change. Section 8 concludes.

2 Literature review

A recent surge in energy economics research has investigated the predicted growth in household

energy consumption in developing countries in the next several decades. Wolfram et al. (2012)

predict that energy consumption will grow by 84% in non-OECD countries compared to 14% in

OECD countries between 2007 and 2035. Shah et al. (2015) record that air conditioning ownership

as a fraction of the number of households in China has increased from less than 5% in 1990 to

more than 100% in 2010, and that air conditioning ownership in other emerging markets are

growing at 10%-15% annually. A changing climate is likely to affect electricity demand in the

coming decades. Exactly how temperatures affect electricity consumption in a development setting,

however, remains an understudied research question.

A growing literature documents short-term household energy responsiveness to temperature
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changes, but much of this is based on data from the U.S. and Europe. Engle et al. (1986) evaluate

various approaches to nonparametric and semiparametric modeling, and apply these to data from

utilities based in the U.S. states of Missouri, Georgia, Connecticut, and Washington. More recently,

Auffhammer et al. (2016), Aroonruengsawat and Auffhammer (2011), Deschenes and Greenstone

(2011), and Crowley and Joutz (2003) study hourly household electricity consumption and find

that total electricity consumption will increase as a result of climate change. Much of the literature

described the household electricity temperature response function as being U-shaped, with energy

consumption being especially high at very low temperatures (when households use electric heating)

and at very high temperatures (when households use electric cooling). Wang and Chen (2014) and

Petri and Caldeira (2015) both study cooling and heating responsiveness to climate change in the

U.S. and find that some cities would experience a net increase in source energy use for cooling

and heating by the 2080s while other cities would experience a net reduction in source energy use,

due to geographic variation. Wenz et al. (2017) use high-frequency temperature and electricity

load data to study the heterogeneity in these temperature response functions across a range of 35

countries, but their data are limited to countries in Europe only.

Studies that look at the relationship between temperature and energy consumption in a

development setting often do so using engineering models, monthly data, or using data aggregated

at the city or region level. Shah et al. (2015) use engineering models to calculate that air condi-

tioning can account for up to 60% of total load on peak summer days in hot climates such as Delhi,

and up to 30% in warm climates such as California. Waite et al. (2017) conduct a comprehensive

meta-analysis on electricity consumption across 18 OECD and 17 non-OECD electricity utilities

to identify a heating change point and a cooling change point for each city. While they identify

a strong cooling relationship in many cities, with electricity consumption increasing sharply at

higher temperatures, they find only moderate effects of electric heating on electricity consumption

at lower temperatures, and only in a small number of cities. Gupta (2014) uses state-level daily

electricity data to document a positive temperature response function at higher temperatures but
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a negative response to higher temperatures in cooler regions, attributable to households adapt-

ing to colder temperatures using electric heating equipment. However, there is often a focus on

the positive response at higher temperature, attributable to increased usage of air conditioning

units. Auffhammer (2014) studies the extensive margin of air conditioner ownership and identifies

increased household air conditioning use as a significant driver of future increased energy con-

sumption in developing countries. On the intensive margin, Davis and Gertler (2015), use monthly

billing data from Mexico and find that electricity consumption increases with temperature given

current levels of air conditioning.

Even less evidence is available on electricity consumption in South Africa. Chikobvu and

Sigauke (2010) and Chikobvu and Sigauke (2013) study temperature drivers of daily electricity

demand to generate daily peak load forecasts, but they use daily maximum hourly demand aggre-

gated at the utility level. Jack and Smith (2016) study electricity consumption among prepaid and

postpaid customers in Cape Town, but do so using monthly billing data only. Understanding the

relationship between temperature and energy consumption in a development setting in particular

is important because economic and geographic differences can cause household incomes, household

appliance ownership patterns, the power generation mix, the climate profile, and the energy infras-

tructure to be substantially different in non-OECD countries, which may all affect this relationship.

In addition, technological and institutional hurdles in the electricity sector have historically made

it more difficult to access high-frequency electricity and temperature data in development settings,

meaning we currently have a less detailed understanding of this relationship than we do in OECD

countries. To the best of my knowledge, this is the first paper to use hourly household level data

to study the effect of temperature on electricity consumption in a development setting.

3 Background

According to the 2011 South African Census, 59% of South African households use electricity

as their primary energy source for heating, with only 2.5% of households primarily using gas,
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and 26% using traditional energy sources such as wood, paraffin, coal, or animal dung. 83% of

households connected to electricity use electric appliances to heat water. This paper studies 5,975

households that purchase electricity from Eskom, South Africa’s national electric utility. Eskom

currently generates approximately 95% of the electricity used in South Africa and operates a vast

network of electricity generation, transmission, and distribution operations throughout Africa. A

large share of electricity consumers in South Africa, including a majority of Eskom customers in

the city of Cape Town, pay monthly installments prior to the consumption of electricity (Jack and

Smith (2015)). These customers are generally referred to as pre-paid customers. The remaining

customers are post-paid customers that pay for the electricity that they consumed at the end of

each month. All 5,975 households in this dataset are post-paid customers.

Eskom employs a standard block rate tariff scheme1, where the price per kWh increases

by roughly 58% once households exceed a threshold of 600 kWh of electricity consumption during

that month. Prices are changed once per year on July 1st by an amount that is previously agreed

upon through negotiations between Eskom and NERSA, the National Energy Regulator of South

Africa2. Any discontinuous jump on this date will be absorbed by the monthly fixed effects included

in the main specification. Auffhammer (2018) finds that estimates for the coefficients of the effect

of temperature on energy demand are identical when price is included in a number of different

ways, as well as when it is excluded from the estimating equation altogether, suggesting that

price response are negligible in temperature estimation. The specifications in this paper therefore

exclude price.

4 Data

I study hourly household electricity consumption by 5,975 households in the province of Gauteng,

South Africa from 1 January 2010 to 31 March 2013. All households are located in the relatively

1While Eskom has considered implementing a time-varying pricing structure to reduce peak demand in the past,

and have conducted some small-scale pilot testing, they currently do not employ any time-varying pricing schemes.
2For example, on July 1st 2016, NERSA increased prices by 12.7%
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higher-income Fourways and Sandton suburbs roughly 20 kilometers north of downtown Johan-

nesburg. Households in this neighborhood often earn upwards of R307, 601 ($37,667) per year

according to the 2011 Census, placing many in the top 7.8% of household income earners in South

Africa. Due to the higher average income of the households, the extent to which these households

experience power outages is minimal, as discussed in Figure A1.

Air conditioner ownership is also likely to be higher among this group, and their electricity

consumption for cooling purposes is therefore likely an upper bound. Electricity is the primary

energy for space heating for 75% of households in Gauteng Province, which includes Johannesburg.

Some households enter (leave) the data later (earlier) than the full sample period. Figure A3

therefore estimates the main specification using only data from 4,651 households between 1 January

2011 to 31 December 2012, for which the data constitute a balanced panel. The results are

consistent.

4.1 Electricity data

Household electricity consumption is recorded electronically using identical pieces of smart meter-

ing technology installed in each household. For each household I remove all observations prior to

the first hour where they consume a non-zero amount of electricity. These earlier data likely reflect

periods where the technology was not yet functioning correctly and not yet sending data to the

server, rather than true zero consumption hours.

The resulting sample consists of 132,375,282 hourly observations across 5,975 households

over 1,186 days. Table 1 provides descriptive statistics for the entire sample as well as for the

balanced panel of 4,651 households spanning 2011 and 2012.
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Table 1: Descriptive Statistics

Full
Sample

Balanced
Panel

Number of Observations 132,375,282 81,597,144

Number of Households 5,975 4,651

Mean Observations Per Household 22,154 17,544

Min kWh Reading 0.00 0.00

Mean Household Min .018 .027

Mean Household Mean 2.02 2.07

Mean Household Max 12.17 11.71

Max kWh Reading 127.4 127.4

Percentage kWh=0 1.7% 1.1%

Descriptive statistics for full sample from 1 January 2010 - 31 March 2013

and for the balanced panel from 1 January 2011 - 31 December 2012.

Figure 1 presents a sample of two weeks of data for four randomly chosen households.

Three types of variation in the data are apparent. The first is intra-day variation: the within-

day distribution of electricity consumption appears to be bi-modal, with consumption peaking

during the morning and evening hours. The second is cross-sectional variation between households:

certain households consistently consume more electricity on average. Lastly, seasonal climate cycles

contribute to intra-annual variation. Household electricity use is on average higher in the winter

months, consistent with widespread use of electric heating appliances. In addition, it appears

that some households increase their electricity consumption in winter more than other households.

Departing somewhat from other settings, levels and patterns of electricity consumption are similar

on weekends and weekdays.
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Figure 1: Two weeks of hourly electricity consumption by four random households

Panel A Panel B

Each panel displays hourly consumption over one week for four randomly selected households. Panel A

displays a sample week in summer 2012. Panel B displays a sample week in winter 2010.

4.2 Weather data

I use hourly weather data from five weather stations in Northern Johannesburg, collected by the

South African Weather Service (SAWS).3 The maximum distance between any household and

any weather station is less than 5 miles, with very little geographic heterogeneity. Since the

support across the temperature distribution is equal for all households, selection bias that might

occur if certain households choose to locate in areas with certain temperatures is not a concern.

To minimize measurement error, all households are assigned the same hourly temperature time

series consisting of the average temperature across all five stations. Figure A2 presents the full

time series of daily minimum, mean, and maximum temperatures. Temperatures are highest in

the South African summer months (December - February) and lowest in winter months (June -

September).

4.3 Descriptive evidence

Daily electricity consumption is largely bi-modal, peaking between 7:00 - 10:00am and between

6:00pm - 8:00pm, when residents are most likely to be at home and awake. This also happens

to be when outdoor temperatures are on average above 20◦C. Figure 2 displays this correlation.

Panel A displays the average hourly temperatures and mean kWh consumption over a single day,

3Temperatures are recorded by the SAWS using advanced, identical pieces of equipment that are certified to

operate from −10◦C to 60◦C, well outside the observed temperature range −3.8◦C to 33.8◦C.
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and Panel B displays the number of observations in, and the average kWh of electricity consumed

per household during, each temperature bin.

Figure 2: Hourly temperature and electricity consumption distributions

Panel A

Bars represent the mean temperature at each

hour. Dots represent average electricity con-

sumption at each hour.

Panel B

Bars represent the number of observations in

each temperature bin. Dots represent average

electricity consumption for each temperature

bin.

The endogeneity of electricity supply with respect to weather is a possible concern to iden-

tification. Weather might affect electricity consumption not only by affecting individual behavior

but by affecting electricity supply through technological constraints. The households included in

this study face a tariff schedule that is constant over time, with the exception of annual increases

largely in line with inflation. This endogeneity therefore cannot affect results through a time-

varying pricing channel. There may still be a concern if technological constraints in electricity

supply disproportionately cause power outages during specific temperatures, which mechanically

would reduce demand during these periods. Figure A1 demonstrates that power outages are very

rare in this context.

5 Identification

To estimate the relationship between outdoor temperatures and household electricity consump-

tion, hourly temperatures are assigned to one of 33 temperature bins. Each temperature bin has

a width of 1◦C, such that each temperature dummy T j
t = 1 ∀ Tempt ∈ [j, j + 1) at time t for
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temperature bins j = 1, ..., 33. Temperatures below 2◦C are allocated to the lowest temperature

bin (< 2◦C) and temperatures above 33◦C to the highest temperature bin (> 33◦C). Unless stated

otherwise, each regressions estimates a separate coefficient for the effect of temperature on house-

hold electricity consumption for each temperature bin. This methodology allows for a more flexible

estimation of the effects of temperature on electricity consumption, and enables identification of

non-linearities in temperature response functions without imposing any modelling restrictions (see

for example Engle et al. (1986) for an early discussion on semiparametric estimation of tempera-

ture response functions). Regressions exclude temperature bin 28− 29◦C, hence coefficients for all

other temperature bins estimate the marginal effect on electricity consumption of an additional

hour in each temperature bin, relative to an hour with temperatures in the omitted category, fol-

lowing Deryugina and Hsiang (2014). To control for the correlation displayed in Figure 2 all three

specifications include an hour of day fixed effect φh. To reflect heterogeneous average levels of

consumption across households, the dependent variable in all regressions is log of kWh consumed

per hour. This excludes all observations with zero kWh consumed, and reduces the sample from

132,375,282 to 130,399,087 hourly observations. Figure A4 confirms that results are consistent

when using kWh as the dependent variable and when using the full sample.

The three preferred specifications regress the outcome variable on 33 temperature bins as

follows:

yit =
33∑

j=1

(
βjT

j
t

)
+ φh + εit (1)

yit =
33∑

j=1

(
βjT

j
t

)
+ φhm + εit (2)

yit =
33∑

j=1

(
βjT

j
t

)
+ φhw + εit (3)

where yit is log of kWh consumed by household i at time t. Each coefficient βj can be inter-

preted as the causal effect on household electricity consumption of one hour at each temperature

bin relative to the 28 − 29◦C bin, which is excluded from the regression. εit is the idiosyncratic

error term.
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Specification 2 includes a fixed effect φhm that interacts the hour of day fixed effect with

a month of year fixed effect. Most conservatively, Specification 3 interacts an hour fixed effect

by a week-of-sample fixed effect, φhw. These specifications allow for the separate identification of

seasonal temperature effects and daily temperature effects. Seasonal adaptation involves house-

holds adjusting their appliance usage and settings based on seasonal temperature variation. Daily

adaptation to temperature involves households adapting their usage of electric heating or air con-

ditioning to hourly or daily fluctuations in weather. If households use a fixed set of appliances

in different seasons, but do not adapt the usage of these appliances to daily weather fluctuations,

seasonal adaptation would dominate. Alternatively, if household electricity consumption is flexible

and can respond to a range of daily weather fluctuations, regardless of the season, daily adapta-

tion would dominate. Any difference between Specifications 1, 2, and 3 will be driven by whether

temperature affects electricity consumption on a daily versus seasonal basis.

The robustness checks in Figure A5 include additional fixed effects, including household

fixed effects, weekend fixed effects, and year fixed effects, and their interactions. Including all of

these additional fixed effects does not change the above coefficients meaningfully. Most meaningful

variation is captured in the three specifications above.

Standard errors are clustered conservatively, by household and by week of sample, to control

for exogenous shocks that are correlated across all households such as holidays or public events.

Figure A7 presents regression results for more and less conservative levels of clustering.

6 Results

I estimate the coefficients βj : j = 1, ..., 32 from Specifications 1, 2, and 3 via OLS using 130,399,087

hourly observations from 5,975 households during the period 1 January 2010 - 31 March 2013.

Estimated coefficients and 95% confidence intervals for each temperature bin are plotted in Figure 3

below.
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Figure 3: Regression coefficients for 32 temperature bin dummies

Panel A Panel B Panel C

Coefficient estimates for each of 32 temperature bin dummies. Panel A includes hour of day fixed effects only.

Panel B includes hour of day by month of year fixed effects. Panel C includes hour of day by week of sample fixed

effects. Figure A5 includes additional fixed effects that do not change the results meaningfully. Standard errors are

clustered by household and by week of sample. Shaded regions are 95% confidence intervals. Omitted category is

28-29◦C.

Across all three specifications, household electricity consumption declines approximately

log-linearly across the entire range of 2 − 23◦C, remains constant between temperatures in the

range 23 − 30.5◦C, and then appears to increase sharply at temperatures > 30.5◦. Including a

fixed effect φhm that interacts the hour of day fixed effect with a month of year fixed effect in

Specification 2 flattens the negative slope among low and mild temperatures, but the negative

log-linear relationship remains. Including a fixed effect φhw that interacts the hour of day fixed

effect with a week-of-sample fixed effect in Specification 3 flattens the slope further. This suggests

that hourly responses to short-term changes in temperatures are not as pronounced as responses

to intra-year seasonal changes in average temperatures. This difference could be driven either by

household behavior, where usage of electrical appliances is relatively fixed over shorter periods,

or by a difference between outdoor and indoor temperature caused by the trapping of heat inside

buildings, causing insulation to dampen the short-term effect of outdoor temperatures on indoor

electricity consumption. Unfortunately, these data do not allow for differentiation between these

mechanisms.

Table A1 presents numerical regression results. Figure A3 presents results using a balanced

panel from January 1, 2011 - December 31, 2012. Including only the balanced panel does not

meaningfully affect the results.
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6.1 Log-linear relationship

Despite estimating a coefficient for each temperature bin individually, which does not assume lin-

earity, the results suggest a strong and robust negative log-linear relationship between temperature

and electricity consumption below a heating threshold and a sharp positive relationship above a

cooling threshold. Following Burke and Emerick (2016) and Waite et al. (2017) this analysis esti-

mates the following piecewise linear function, where TL represents the lower threshold, for heating,

and TH represents the higher threshold, for cooling:

yit = β1Tempt + β2Tempt;T<TL
+ β3Tempt;T>TH

+ φh (4)

where yit is log of kWh consumed by household i at time t and Tempt is temperature at time t.

The variable Tempt;T<TL
= (TL − Tempt) · �(Tempt < TL) is the difference between temperature

and the heating threshold TL interacted with an indicator variable for temperature being lower

than TL. Tempt;T>TH
is similarly defined for temperatures higher than the cooling threshold. In

Specification 4, β1 can be interpreted as the percentage increase in kWh for every 1◦C increase in

temperature inside the interval (TL, TH), (β2 − β1) can be interpreted as the percentage increase

in kWh for every 1◦C decrease in temperature below TL, and (β3 + β1) can be interpreted as the

percentage increase in kWh for every 1◦C increase in temperature above TH . As before, φh is an

hour of day fixed effect.

An algorithm searches across heating thresholds 21−29◦C and cooling thresholds 25−35◦C

in 0.5 degree intervals to identify the change-point that minimizes the Root Mean Squared Error

(RMSE). The RMSE is minimized for a heating threshold of 23◦C and a cooling threshold of 30.5◦C.

This is consistent with increased usage of air conditioning above 30◦C, when fans and other less

energy-intensive cooling technologies are no longer sufficient, and is approximately consistent with

previous literature. For example, Waite et al. (2017) perform a meta-analysis of macroeconomic

and engineering analyses of household temperature response functions across 36 cities in Africa,

Asia, and the U.S., and find that thresholds generally fall within the 15− 25◦C range, with non-
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OECD cities generally having higher thresholds than OECD countries. The heating threshold of

23◦C estimated above indeed falls in the upper end of their range.

The results to Specification 4 using the temperature thresholds of 23◦C and 30.5◦C are

presented in Table 2 below:

Table 2: Coefficient estimates across temperature bins

(1) (2) (3)

Tempt -0.0134∗∗∗ -0.0054∗∗∗ -0.0088∗∗∗

(0.0023) (0.0015) (0.0011)

Tempt;T<TL
0.0279∗∗∗ 0.0123∗∗∗ 0.0014

(0.0026) (0.0023) (0.0018)

Tempt;T>TH
0.0943∗∗∗ 0.0541∗∗∗ 0.0406∗∗

(0.0187) (0.0154) (0.0130)

Observations 130,399,087 130,399,087 130,399,087

Hour Fixed Effects Yes Yes Yes

Hour X Month FE No Yes No

Hour X Week of Sample FE No No Yes

Dependent variable is log of kWh. Temperature in ◦C interacted with dummies for

Low and High temperature according to Specification 4. Column (1) includes hour

of day fixed effects only. Column (2) includes hour of day by month of year fixed

effects. Column (3) includes hour of day by week of sample fixed effects. Standard

errors clustered by household and by week of sample. * p < 0.05, ** p < 0.01, ***

p < 0.001

The coefficients in Column (1), which do not control for seasonal variation, indicate a

4.1% increase in electricity consumption for every 1◦C below the heating threshold TL = 23,

and a 12.2% increase in electricity consumption for every 1◦C above the cooling threshold TH =

30.5. The coefficients in Column (2), which controls for month of year, represent a much smaller

1.7% increase in electricity consumption for every 1◦C below the heating threshold and a much

smaller 6.6% increase in electricity consumption for every 1◦C above the cooling threshold. Finally,

the coefficients in Column (3), which controls for week of sample, represent a 1.0% increase in

electricity consumption for every 1◦C below the heating threshold and a 4.2% increase in electricity

consumption for every 1◦C above the cooling threshold. Combined, this evidence suggests that

electrical appliance usage responses to both heating and cooling temperatures are more strongly
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driven by seasonal variation than hourly variation in temperatures.

6.2 Seasonal variation

Figure 3 demonstrates that the within-week electricity consumption response to hourly temper-

ature fluctuations differs substantially from the response to seasonal temperatures. To provide

more detail on how short-term temperature responsiveness changes seasonally, Figure 4 presents

Specification 1 using data from summer months and winter months separately.

Figure 4: Hourly kWh consumption temperature bin coefficients by season

Summer: September - April Winter: May - August

Coefficient estimates for each of 32 temperature bin dummies separated by summer and

winter months. Specification includes hour of day fixed effects. Standard errors clustered by

household. Shaded regions are 95% confidence intervals. Omitted category is 28-29◦C.

Households display almost no temperature response throughout the spring, summer, and fall

months of September through April. The electricity response function with respect to temperature

in each of those months appears much less steep. In contrast, household electricity consumption

displays a steep negative response function during the winter months of May through August,

which is likely driving the main results seen in Figure 3. This suggests households respond to cold

temperatures in winter on a daily basis by employing an appliance such as an electric heater, but

do not take similar short-term response measures to low temperatures during relatively warmer

months.

6.3 Variation across hour of the day

Temperature changes might not cause significant changes in energy consumption between 10pm -

6am, when most household members are asleep. On the other hand, household preferences over
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different temperatures may vary over hours of the day, causing differential appliance use responses.

To investigate whether temperature responses differ significantly by hour of day, Figure 5 presents

regression results for Specification 3 using data from winter and summer and from four separate

times of day separately: nighttime (10pm - 6am), morning (6am - 10am), daytime (10am - 5pm),

and evening (5pm - 10pm). The positive effect of low temperatures on electricity consumption

in winter is consistent across all times of day, while the positive effect of high temperatures on

electricity consumption is driven by nighttime temperatures in summer. This indicates that during

winter, residents are sensitive to low temperatures across all times of day.

Figure 5: Hourly kWh usage temperature bin coefficients by time of day and season

Panel A: Summer (September - April)
Nighttime Morning Daytime Evening

Panel B: Winter (May - August)
Nighttime Morning Daytime Evening

Coefficient estimates for each of 32 temperature bin dummies. Specification includes hour of day fixed effects.

Standard errors clustered by household and by week of sample. Shaded regions are 95% confidence intervals. Due

to sample size restrictions the omitted category is 15-16◦C and temperature bins are restricted to between 5-31◦C.
Times of day are defined as nighttime (10pm - 6am), morning (6am - 10am), daytime (10am - 5pm), and evening

(5pm - 10pm).

6.4 Daily responses

A number of papers (Auffhammer (2018), Davis and Gertler (2015), and Gupta (2014), among

others), estimate temperature coefficients using daily data. To compare these results to their find-

ings, Specification 5 estimates the relationship between temperature and electricity consumption
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in a manner analogous to the econometric specifications in the previous section but using total

daily electricity consumption and average daily temperature instead.

yid =
33∑

j=1

(
βjT

j
d

)
+ εit (5)

where yid is log of kWh consumed by household i on day d. T j
d (j = 1, ..., 33) are dummies for 33

unique temperature bins of width 1◦C, each representing average temperature on day d. Figure 6

presents results from Specification 5 using no fixed effects and month of year fixed effects.

Figure 6: Effect of daily temperature on daily electricity consumption

Panel A Panel B Panel C

Coefficient estimates for each of 24 temperature bin dummies. Due to small samples at higher temper-

atures for daily averages, omitted category is any day with mean temperature > 24◦C. Panel A does

not include fixed effects. Panel B includes month of year fixed effects. Panel C includes week of sample

fixed effects. Figure A6 includes additional fixed effects that do not change the results meaningfully.

Standard errors clustered by household and by month of sample. Shaded regions are 95% confidence

intervals.

Results using daily data are consistent with the previous analysis using hourly data. Both

specifications estimate a negative relationship between temperature and electricity use. Panel A

displays a strong negative log-linear slope between 2 − 23◦C. The results in Panel B and Panel

C indicate a more muted but consistent negative log-linear relationship over this same interval.

This suggests that in winter, when days consistently average below 15◦C, households respond by

consistently using their heating appliances. When controlling for seasonal variation, households are

much less responsive to daily temperature fluctuations. There are not enough days with average

temperatures higher than 25◦C to identify a positive slope above a threshold temperature, as

identified using hourly data in the previous section.

These results differ significantly from a number of previous findings in the literature.

Auffhammer (2018) estimates 1,235 sets of temperature dummy coefficients for each of 1,235 zip
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codes across California. At the 25 − 26◦C bin, the 10-90% confidence interval of household elec-

tricity consumption responsiveness to temperature changes ranges from 0.3 − 2% relative to the

15 − 16◦C bin. The estimates presented here instead demonstrate a consistent negative average

effect over this interval. This is reasonable when considering the much lower rate of air condition-

ing penetration in South Africa relative to California. Davis and Gertler (2015) conduct a similar

exercise using monthly billing data from Mexico and find that households on average consume

constant electricity between 10− 24◦C, consistent with lower usage of electric heating and higher

usage of gas for heating in Mexico than in South Africa.

Specifications using daily minimum or daily maximum temperature respectively instead

of daily mean temperature display the same consistent negative relationship between household

electricity use and temperature throughout the temperature distribution. Households are especially

responsive when the minimum daily temperature drops below 7◦C.

6.5 Robustness checks

Figure A5 demonstrates that results are consistent along an extensive set of fixed effect specifica-

tions. Regardless of any additional fixed effects included in the specification, any regression that

includes hour of day but not month or week of sample fixed effects closely resembles results from

Specification 1; any regression that includes hour of day fixed effects interacted with month of year

fixed effects closely resembles results from Specification 2, and any regression that includes hour of

day fixed effects interacted with week of sample fixed effects closely resembles results from Speci-

fication 3. This suggests that these dimensions drive the results. Robustness checks for sensitivity

to fixed effect specifications for regressions using daily data, presented in Figure A6, confirm that

those results are also robust.

If power outages or missing meter measurements were correlated with temperatures, which

is technologically feasible, this may bias the results. To test for this, Figure A4 presents results to

estimation of the main specification using kWh consumption instead of log of kWh consumption
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as the dependent variable and an estimation that excludes observations where hourly consumption

was 0 kWh (as reported in Table 1, this constitutes 11.5% of observations). Results are consistent

with the main results.

Figure A7 confirms that standard errors do not change significantly and the main results

retain statistical significance at the 95% confidence level across varying levels of clustering.

Finally, extensive robustness checks that include hourly and daily temperature lags as well

as dummies for cold or hot spells of consecutive hours and days of low or high temperatures

respectively do not reveal systematic patterns.

7 Simulation

Climate change is expected to cause significant increases in temperatures in the coming decades.

This analysis uses the causal relationship identified between temperature and electricity consump-

tion to project electricity consumption under a new, increased distribution of temperatures. While

other attributes, such as appliance ownership and average energy efficiency, are likely to change

significantly and thereby meaningfully affect energy consumption over the coming decades, for the

sake of clarity this simulation holds constant all determinants of electricity consumption other than

temperature.

The effect of climate change on weather in South Africa has been studied widely. Future

rainfall predictions rely on uncertain projections for ocean temperatures, humidity, the strength

of the jet stream, and other physical characteristics in the Southern Africa region. There is

therefore a significant amount of uncertainty regarding future rainfall patterns. On the other hand,

the Climate Change Adaptation plan by the Department of Agriculture, Forestry and Fisheries,

Republic of South Africa (2015) makes a precise prediction on future temperature changes. By

mid-century, the coastal regions of South Africa are expected to experience an average increase

in temperatures of 1.5 − 2.5◦C, while the interior regions are expected to experience an average

increase in temperatures of 3.0 − 3.5◦C. Given Johannesburg’s location in the interior of South

21



Africa, I use an expected increase of 3.25◦C to project future consumption. Appendix Figure A8

presents equivalent results for temperature increases of 1.25◦C and 5.25◦C.

Figure 7 displays average electricity consumption in each temperature bin as well as the

current and projected temperature distributions. The projected temperature distribution is defined

as current temperatures shifted upwards by 3.25◦C. The highest bin includes all observations

greater than 33◦C.

Figure 7: Electricity consumption per bin overlaid with the current and projected temperature

distributions

Graph displays electricity consumption and temperature distribution simultane-

ously. Bars represent the fraction of observations in each temperature bin (values

on left y-axis). Grey bars represent the current temperature distribution while

red bars represent the projected future temperature distribution. Dots represent

average consumption in kWh for each temperature bin (values on right y-axis).

I store the regression estimates from my main specification, replace the temperature values

with the shifted temperature values, and apply the estimated coefficients to the new temperature

values to project the new electricity consumption estimates. By including the residuals from

the original regression to predict consumption, this analysis identifies the marginal effect of the

projected temperature change. It is important to acknowledge once again that the projected effects

are only on the intensive margin. Any reading where 0 kWh was consumed will be predicted to

have 0 kWh of consumption even at higher temperatures. Figure 8 below presents the observed

and the predicted distribution of kWh readings under the observed and projected temperature

distributions.
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Figure 8: Histogram of hourly kWh readings by sample overlaid with projected consumption
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Graph displays percentage of electricity consumption reading in each kWh bin of

width 0.25. Grey bars represent the true data. Red bars represent the predicted

values using the shifted temperature distribution.

Figure 8 suggests that the increased temperature distribution would shift left relative to

current consumption. The average annual electricity consumption per household decreases from

17.6 MWh (median 15.7 MWh) under the current temperature distribution to 16.6 MWh (median

14.7 MWh) under the projected temperature distribution. These results suggest that an increase

in temperatures of 3.25◦C would cause an overall decrease of 1,093.4 kWh per year per household,

equivalent to 6.2% relative to baseline consumption.

8 Conclusion

This paper uses 132,375,282 hourly electricity consumption data from 5,975 households located

in Johannesburg, South Africa to identify the causal effect of short-term temperature changes on

household electricity consumption. These data provide a unique opportunity to study household

electricity consumption patterns in an area of the world where this has not been studied in such

detail previously, but where energy usage is expected to increase significantly over the next several

decades.

A flexible estimation of the effect of temperature on electricity consumption using tempera-

ture bins of width 1◦C reveals a consistent negative log-linear relationship. An algorithm searching
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across the temperature distribution in 0.5◦C intervals to minimize the model’s Root Mean Squared

Error (RMSE) identifies a heating threshold of 23◦C and an cooling threshold of 30.5◦C. Across

the range of 2−23◦C, every 1◦C increase in temperature causes a reduction in household electricity

consumption of approximately 4.1%. While there is a limited number of observations at tempera-

tures above 30◦C, there is suggestive evidence that electricity consumption increases steeply when

temperatures exceed the air conditioning use threshold of 30.5◦C. Detailed analyses of these results

over time of day and month of year reveal that this result is primarily driven by seasonal usage

of electric heating during winter. A large portion of household responses to temperature changes

occur over seasonal temperature changes. In the short-term, households are more responsive to

low temperature in winter than in summer, suggesting that they employ electric heating on cold

days in the winter, but do not increase electricity consumption similarly by employing electric

heating during cold days in the summer. These results are robust to a large number of fixed effect

specifications, different levels of clustering, and sub-sample analyses to account for outliers.

Using these results, the analysis then simulates household electricity consumption under an

upward shift of the temperature distribution of 3.25◦C. Under this scenario, aggregate household

electricity consumption would decrease by 1,093.4 kWh per year per household, equivalent to 6.2%

relative to baseline consumption. This is a departure from previous literature (Deschenes and

Greenstone (2011), Davis and Gertler (2015), and Dyson et al. (2014), among others) that identifies

a positive effect of temperature on household energy consumption at similar temperatures. Policy

makers would benefit from future work that identifies how specific underlying differences, such as

income, geography, infrastructure, or tariff structures, drive these diverging results. Regardless of

the specific underlying drivers, the results presented in this paper suggest that there is significant

heterogeneity in the way temperatures affect household energy demand across the world.

This result has meaningful implications for policymakers. Mornings and evenings experi-

ence both lower temperatures than hours in the middle of the day, as well as increased demand

resulting from most people’s daily movement patterns. Energy planners working to limit out-
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ages due to capacity constraints will need to incorporate both drivers into their forecasts. Policy

makers looking to reduce the need for capacity increases by reducing demand through energy effi-

ciency improvements would benefit from targeting their energy efficiency programs towards electric

heating appliances. As growing middle-class incomes in developing countries cause increased pur-

chases of both heating and cooling appliances, it will be important to encourage energy efficiency

improvements not only among air conditioners but among electric heaters, as well.

This research does not study the extent to which power outages and other supply-side

mechanisms influence the relationship between temperature and household electricity consumption,

focusing instead on demand-side responses. In addition, the analysis is limited to responses to

temperature and does not factor in additional weather variation such as precipitation, cloudiness,

or humidity. These questions provide opportunity for follow-up work.
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Appendix

Figures

Figure A1 plots the proportion of observations in a given day during which a particular household

consumes 0 kWh. The figure suggests that the high-frequency electricity consumption monitoring

equipment was turned on in a staggered manner across households. For this reason, all the analyses

in this paper exclude all 0 kWh observations that occur prior to the first positive consumption

observation. This mechanically also results in dropping all households for which all consumption

values are 0 kWh.

If outages were a common occurrence, especially in a geographically small area such as this

sample, we would expect to see specific days during which entire groups of households consumed

0 kWh during multiple hours. This would be represented by vertical dark lines in Figure A1. This

pattern largely does not appear in the data. This confirms anecdotal evidence by South African

economists and utility employees that power outages are rare in this area of Johannesburg.
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Figure A1: Proportion of 0 kWh consumption observations

Each pixel represents the fraction of hours during which each household consumed 0 kWh

on that day. Vertical group of darker shading would indicate either a power outage affecting

a large number of customers on that day or systematically missing data. Such incidences do

not appear to be common. Households are ordered by the date on which they entered the

sample.

Figure A2: Temperature time-series

Daily minimum, mean, and maximum temperature averaged across the five weather stations

for the full sample period, 1 January 2010 through 31 March 2013.
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Figure A3: Regression coefficients using balanced panel

Panel A Panel B Panel C

Coefficient estimates for each of 32 temperature bin dummies restricting the sample to a balanced panel of 4,651

households from 1 January, 2011 - 31 December, 2012. Panel A includes hour of day fixed effects only. Panel B

includes hour of day by month of year fixed effects. Panel C includes hour of day by week of sample fixed effects.

Standard errors clustered by household and week of sample. Shaded regions are 95% confidence intervals. Omitted

category is 28-29◦C. Including only a balanced panel does not affect results relative to those presented in Figure 3.

Figure A4: Robustness checks: Log scale

Panel A Panel B

Coefficient estimates for each of 32 temperature bin dummies using kWh as the outcome variable, rather

than log(kWh). Panel A includes all observations. Panel B excludes observations where the outcome

variable equals 0. Both specifications include hour by month fixed effects. Standard errors clustered by

household and by week of sample.
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Figure A5: Robustness checks: Fixed effects

Panel A: Basic fixed effects only

1) No fixed effects. 2) Hour fixed effects.
3) Hour by month fixed

effects.

4) Hour by week of

sample fixed effects.

Panel B: Basic fixed effects interacted with household by weekend by year fixed effects

1) Household by weekend

by year fixed effects.

2) Household by weekend

by year by hour fixed

effects.

3) Household by weekend

by year by hour by

month fixed effects.

4) Household by weekend

by year by hour by week

of sample fixed effects.

Coefficient estimates for each of 32 temperature bin dummies. Standard errors clustered by household

and by week of sample. Shaded regions are 95% confidence intervals. Omitted category is 28-29◦C.
Interacting fixed effects with household, weekend, and year fixed effects does not affect results relative

to those presented in Figure 3.

Figure A6: Robustness checks: Fixed effects for daily responsiveness

Panel A Panel B Panel C

Coefficient estimates for each of 24 temperature bin dummies. Due to small samples at higher tempera-

tures for daily averages, omitted category is any day with mean temperature > 24◦C. Panel A includes

year by household by weekend fixed effects. Panel B includes year by household by weekend by month of

year fixed effects. Panel B includes year by household by weekend by month of year fixed effects. Panel

C includes year by household by weekend by week of sample fixed effects. Standard errors clustered by

household and month of sample. Shaded regions are 95% confidence intervals. Interacting fixed effects

with household, weekend, and year fixed effects does not affect results relative to those presented in

Figure 6.
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Figure A7: Robustness checks: Clustering

Panel A Panel B Panel C Panel D

Graphs present coefficient estimates from Specification 1 for each of 33 temperature bin dummies, as well as bars

representing 95% confidence interval. All specifications include hour fixed effects. Standard errors in the regression

in Panel A are not clustered. Standard errors in the regression in Panel B are clustered by household only. Standard

errors in the regression in Panel C are two-way clustered by household and week of sample. Standard errors in the

regression in Panel D are three-way clustered by household, week of sample, and month of year.

Figure A8: Histogram of hourly kWh readings by sample overlaid with projected consumption

Panel A Panel B

Graph displays percentage of electricity consumption reading in each kWh bin of width 0.25. Black bars represent

the true data from the random sample of 500 households from years 2011 and 2012. Red bars represent the

predicted values using the shifted temperature distribution. Panel A projects usage under a temperature increase

of 1.25◦Celsius and Panel B projects usage under a temperature increase of 5.25◦C.
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Tables

Table A1: Coefficient estimates across temperature bins

(1) (2) (3)

< 2C 0.98∗∗∗ (0.04) 0.46∗∗∗ (0.04) 0.31∗∗∗ (0.03)

2-3C 0.93∗∗∗ (0.04) 0.42∗∗∗ (0.04) 0.28∗∗∗ (0.03)

3-4C 0.91∗∗∗ (0.03) 0.42∗∗∗ (0.04) 0.29∗∗∗ (0.03)

4-5C 0.87∗∗∗ (0.03) 0.39∗∗∗ (0.04) 0.25∗∗∗ (0.03)

5-6C 0.83∗∗∗ (0.03) 0.35∗∗∗ (0.03) 0.24∗∗∗ (0.02)

6-7C 0.77∗∗∗ (0.03) 0.31∗∗∗ (0.03) 0.21∗∗∗ (0.02)

7-8C 0.74∗∗∗ (0.03) 0.30∗∗∗ (0.03) 0.20∗∗∗ (0.02)

8-9C 0.67∗∗∗ (0.03) 0.26∗∗∗ (0.03) 0.19∗∗∗ (0.02)

9-10C 0.62∗∗∗ (0.03) 0.25∗∗∗ (0.03) 0.18∗∗∗ (0.02)

10-11C 0.56∗∗∗ (0.03) 0.22∗∗∗ (0.03) 0.16∗∗∗ (0.02)

11-12C 0.50∗∗∗ (0.03) 0.19∗∗∗ (0.02) 0.14∗∗∗ (0.02)

12-13C 0.47∗∗∗ (0.03) 0.18∗∗∗ (0.02) 0.14∗∗∗ (0.02)

13-14C 0.43∗∗∗ (0.03) 0.16∗∗∗ (0.02) 0.13∗∗∗ (0.02)

14-15C 0.38∗∗∗ (0.02) 0.13∗∗∗ (0.02) 0.12∗∗∗ (0.01)

15-16C 0.35∗∗∗ (0.02) 0.12∗∗∗ (0.02) 0.11∗∗∗ (0.01)

16-17C 0.32∗∗∗ (0.02) 0.12∗∗∗ (0.01) 0.11∗∗∗ (0.01)

17-18C 0.30∗∗∗ (0.02) 0.11∗∗∗ (0.01) 0.10∗∗∗ (0.01)

18-19C 0.27∗∗∗ (0.02) 0.10∗∗∗ (0.01) 0.10∗∗∗ (0.01)

19-20C 0.23∗∗∗ (0.02) 0.09∗∗∗ (0.01) 0.09∗∗∗ (0.01)

20-21C 0.19∗∗∗ (0.01) 0.07∗∗∗ (0.01) 0.08∗∗∗ (0.01)

21-22C 0.15∗∗∗ (0.01) 0.06∗∗∗ (0.01) 0.07∗∗∗ (0.01)

22-23C 0.10∗∗∗ (0.01) 0.04∗∗∗ (0.01) 0.06∗∗∗ (0.01)

23-24C 0.07∗∗∗ (0.01) 0.03∗∗ (0.01) 0.05∗∗∗ (0.01)

24-25C 0.05∗∗∗ (0.01) 0.02∗ (0.01) 0.04∗∗∗ (0.01)

25-26C 0.02∗ (0.01) 0.00 (0.01) 0.02∗∗∗ (0.01)

26-27C 0.02∗ (0.01) -0.00 (0.01) 0.02∗∗ (0.00)

27-28C 0.00 (0.01) -0.01 (0.01) 0.01 (0.00)

29-30C -0.00 (0.01) -0.00 (0.01) 0.00 (0.00)

30-31C 0.02 (0.01) 0.00 (0.01) 0.01 (0.01)

31-32C 0.04 (0.02) 0.02 (0.02) 0.02 (0.01)

> 32C 0.12∗∗ (0.05) 0.08∗ (0.04) 0.04 (0.03)

Observations 130,399,087 130,399,087 130,399,087

Hour FE Yes Yes Yes

Hour X Month FE No Yes No

Hour X WOS FE No No Yes

Coefficient estimates for each of 32 temperature bin dummies from the three main specifications. Out-

come variable is log of kWh consumed per hour. Column (1) includes hour of day fixed effects only.

Column (2) includes hour of day by month of year fixed effects. Column (3) includes hour of day by week

of sample fixed effects. Standard errors clustered by household and week of sample. Omitted category

is 28-29◦C. Results are presented graphically in Figure 3. * p < 0.05, ** p < 0.01, *** p < 0.001.
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